On a nonlinear system of PDE’s arising in free convection

نویسندگان

  • Bernard Brighi
  • Senoussi Guesmia
  • Bernard BRIGHI
  • Senoussi GUESMIA
چکیده

In this paper, we consider a model problem introduced in [2], and derived from a coupled system of partial differential equation arising in the study of free convection about a vertical flat plate embedded in a porous medium. In [2], some existence result has been obtained under very constraining hypothesis. Here, we come back to the weak formulation of this problem, and prove that there is one and only one weak solution, under reasonable hypotheses on the data. Details about the physical background can be found, for example, in [13], [14], [15], [16], [19] and [22]. In these papers, the authors assume that convection takes place in a thin layer around the plate. This allows to make boundary-layer approximations, and to get similarity solutions by solving the ordinary differential equation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Stability for Thermal Convection in a Couple Stress Fluid Saturating a Porous Medium with Temperature-Pressure Dependent Viscosity: Galerkin Method

A global nonlinear stability analysis is performed for a couple-stress fluid layer heated from below saturating a porous medium with temperature-pressure dependent viscosity for different conducting boundary systems. Here, the global nonlinear stability threshold for convection is exactly the same as the linear instability boundary. This optimal result is important because it shows that lineari...

متن کامل

Free Convection Flow and Heat Transfer of Nanofluids of Different Shapes of Nano-Sized Particles over a Vertical Plate at Low and High Prandtl Numbers

In this paper, free convection flow and heat transfer of nanofluids of differently-shaped nano-sized particles over a vertical plate at very low and high Prandtl numbers are analyzed.  The governing systems of nonlinear partial differential equations of the flow and heat transfer processes are converted to systems of nonlinear ordinary differential equation through similarity transformations. T...

متن کامل

Insight into the Boundary Layer Flows of Free Convection and Heat Transfer of Nanofluids over a Vertical Plate using Multi-Step Differential Transformation Method

This paper presents an insight into the boundary layer of free convection and heat transfer of nanofluids over a vertical plate at very low and high Prandtl number. Suitable similarity variables are used to convert the governing systems of nonlinear partial differential equations of the flow and heat transfer to systems of nonlinear ordinary differential equations which are solved using multi-s...

متن کامل

Unsteady free convection oscillatory couette flow through a variable porous medium with concentration profile

In this paper we have studied the effect of free convection on the heat transfer and flow through variable porous medium which is bounded by two vertical parallel porous plates. In this study it is assume that free stream velocity oscillates with time about a constant mean. Periodic temperature is considered in the moving plate. Effect of different parameters on mean flow velocity, Transient ve...

متن کامل

Approximate solution of laminar thermal boundary layer over a thin plate heated from below by convection

In this paper, an integration of a symbolic power series method - Padé approximation technique (PS - Padé), was utilized to solve a system of nonlinear differential equations arising from the similarity solution of laminar thermal boundary layer over a flat plate subjected to a convective surface boundary condition. As both boundary conditions tended to infinity, the combination of series solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008